The frictional heating effects caused by the interaction between brush seal wire and rotor coating directly affected the sealing performance and service life of brush seals. The theory of frictional heating effects between brush seal frictional pairs was analyzed. The experimental device of frictional heating effects between brush seal frictional pairs was designed and built. Six brush seal experimental parts with different structural parameters and brush wire materials and four frictional turntables with different coating materials were designed and processed. The effects of working condition parameters, structural parameters and different frictional pair materials on the frictional heating effects of brush seals were studied experimentally. By comparing and analyzing the maximum temperature of brush seals and the wear morphology and wear amount of frictional pairs before and after wear, the matching relationship between brush wire and rotor coating material was obtained. The results show that the maximum temperature of brush seals increases rapidly and then tends to be stable with the increase of friction time, and increases with the increase of interference. When the interference increases from 0.3 mm to 0.4 mm, the average maximum temperature of brush wires rises to 39.96 ℃. The maximum temperature increases with the increase of the brush thickness and decreases with the increase of the rear baffle protection height. When the brush wire material is cobaltbased superalloy GH605, the best rotor coating material is WC; when the brush wire material is nickelbased superalloy GH4169, the best rotor coating material is ZrO2.These two matching materials may produce lower friction heat under the same working conditions, and the wear resistance is higher than that of other matching materials.